Abstract

We investigate the quantum correlations of a two-qubit XYZ Heisenberg spin-1/2 chain model with Dzyaloshinskii–Moriya interaction. The two-qubit system is considered in thermal equilibrium. The variations of logarithmic negativity, uncertainty-induced quantum nonlocality (UIN) and trace distance discord, versus the parameters characterizing the system, are analyzed. The results show that the UIN measure captures quantum correlations that cannot be revealed by entanglement and trace discord. We also show that the Dzyaloshinskii–Moriya interaction enhances the non-classical correlations between the spins and can weaken the undesirable destructive effects of thermal fluctuations. In addition, an entangled–unentangled phase transition can be detected from the behavior of logarithmic negativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.