Abstract

A new method based on the thermal quadrupoles technique for heat transfer modelling in multilayered slabs with heat sources is proposed. Classical thermal quadrupoles use hyperbolic functions and numerical problems occur according to the argument value that depends on thermophysical and geometrical properties as well as characteristics times. We propose a new formulation based on exponential function with negative argument. Using this formulation in the classical equivalent impedance network allows to compute efficiently the thermal behaviour of multilayered slabs with internal heat sources whatever the time and the thermophysical properties. This approach is applied in order to simulate heat transfer in three different multilayered materials with heat sources. These simulations show the capability of such a methodology to simulate time and space multiscale heat diffusion problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.