Abstract
Due to the complexity and diversity of polyolefinic plastic waste streams and the inherent non-selective nature of the pyrolysis chemistry, the chemical decomposition of plastic waste is still not fully understood. Accurate data of feedstock and products that also consider impurities is, in this context, quite scarce. Therefore this work focuses on the thermochemical recycling via pyrolysis of different virgin and contaminated waste-derived polyolefin feedstocks (i.e., low-density polyethylene (LDPE), polypropylene (PP) as main components), along with an investigation of the decomposition mechanisms based on the detailed composition of the pyrolysis oils. Crucial in this work is the detailed chemical analysis of the resulting pyrolysis oils by comprehensive two-dimensional gas chromatography (GC × GC) and ICP-OES, among others. Different feedstocks were pyrolyzed at a temperature range of 430–490 °C and at pressures between 0.1 and 2 bar in a continuous pilot-scale pyrolysis unit. At the lowest pressure, the pyrolysis oil yield of the studied polyolefins reached up to 95 wt%. The pyrolysis oil consists of primarily α-olefins (37–42 %) and n-paraffins (32–35 %) for LDPE pyrolysis, while isoolefins (mostly C9 and C15) and diolefins accounted for 84–91 % of the PP-based pyrolysis oils. The post-consumer waste feedstocks led to significantly less pyrolysis oil yields and more char formation compared to their virgin equivalents. It was found that plastic aging, polyvinyl chloride (PVC) (3 wt%), and metal contamination were the main causes of char formation during the pyrolysis of polyolefin waste (4.9 wt%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Waste Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.