Abstract

A laboratory simulation was performed to study the thermal protective performance of fabric systems under low level thermal hazards in the range of 6.3—8.3 kW/m2 . Two approaches were used. The first used a method similar to the ASTM F 1939, radiant heat resistance test, while the second used a modification designed to capture the contribution to skin burn injury due to energy stored in the test specimens being released after the direct exposure had ended. Both dry and wet specimens were tested. In order to accommodate the prolonged exposure time a water cooled heat flux sensor was used to calibrate the radiant heat source and measure the energy directly transmitted through during the exposure and discharged later from the fabric systems. The Henriques Burn Integral (HBI) was adopted and programmed with a three layer skin model to predict the time required to achieve a second degree skin burn injury. The study investigated the thermal protection provided by the clothing with different layering and examined the effect of moisture under low level radiant heat exposures. In addition, the physiological burden associated with wearing the clothing was predicted and compared. The results obtained show the difference in measured protection level under low radiant heat from these two approaches and demonstrate that the stored thermal energy released from the clothing system significantly lowers the measured thermal protective performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.