Abstract

We present simulation results for the volume expansivity, isothermal compressibility, isobaric heat capacity, Joule-Thomson coefficient and speed of sound for carbon dioxide (CO 2 ) in the supercritical region, using the fluctuation method based on Monte Carlo simulations in the isothermal-isobaric ensemble. We model CO 2 as a quadrupolar two-center Lennard-Jones fluid with potential parameters reported in the literature, derived from vapor-liquid equilibria (VLE) of CO 2 . We compare simulation results with an equation of state (EOS) for the two-center Lennard-Jones plus point quadrupole (2CLJQ) fluid and with a multiparametric EOS adjusted to represent CO 2 experimental data. It is concluded that the VLE-based parameters used to model CO 2 as a quadrupolar two-center Lennard-Jones fluid (both simulations and EOS) can be used with confidence for the prediction of thermodynamic properties, including those of industrial interest such as the speed of sound or Joule-Thomson coefficient, for CO 2 in the supercritical region, except in the extended critical region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call