Abstract

Thermal properties of rocks are essential parameters for investigating the geothermal regime of sedimentary basins, and they are also important factors in assessments of hydrocarbon and geothermal energy resources. The Tarim Basin, the largest basin located in the north of the Tibetan Plateau, northwestern China, has great hydrocarbon resource potential and is an ongoing target for industry exploration. However, the thermal properties of sedimentary rocks within the basin are yet to be systematically investigated at a basin scale, thereby limiting our understanding of the thermal regime in the basin. Here, we collected 101 samples of sedimentary rocks and measured their thermal properties. Our results show that the ranges (and means) of thermal conductivity, radiogenic heat production, and specific heat capacity are 1.08–5.35 W/mK (2.52 ± 0.99 W/mK), 0.03–3.24 μW/m3 (1.24 ± 0.87 μW/m3), and 0.75–1.10 kJ/(kg·°C) (0.87 ± 0.07 kJ/(kg·°C)), respectively. Volumetric heat capacity and thermal diffusivity at the temperature of 40°C range from 1.61 to 2.79 MJ/(m3·K) (2.26 ± 0.25 MJ/[m3·K]) and 0.44–2.95 × 10−6 m2/s ((1.12 ± 0.53) × 10−6 m2/s), respectively. The thermal properties vary considerably for different lithologies, even within the same lithotype, indicating that thermal properties alone cannot be used to distinguish lithology. Thermal conductivity increases with increased burial depth, density, and stratigraphic age, suggesting the dominant influence is porosity variation on thermal conductivity. Furthermore, a strong contrast in the thermal properties of rock salt and other sedimentary rocks perturbs the geothermal pattern, which should be taken into consideration when performing basin modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.