Abstract

Thermal properties of the redeposition layer on the inner plate of the W-shaped divertor of JT-60U have been measured with laser flash method so as to estimate transient heat loads onto the divertor. Morphology analysis of the redeposition layer was conducted with a scanning electron microscope. Measurement of a redeposition layer sample of more than 200 μm thick, which had been produced near the most frequent striking point, showed following results: (1) the bulk density of the redeposition layer is about half of that of carbon fiber composite material; (2) the specific heat of the layer is roughly equal to that of the isotropic graphite; (3) the thermal conductivity of the redeposition layer is two orders of magnitude smaller than that of the carbon fiber composite. This low thermal conductivity of the redeposition layer is considered to be caused by a low graphitization degree of the redeposition layer. The difference between the divertor heat loads and the loss of the plasma stored energy becomes smaller taking account of thermal properties of the redeposition layer on the inner divertor, whereas estimated heat loads due to the ELMs is still larger than the loss. This is probably caused by the poloidal distribution of the thermal properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call