Abstract

Light-emitting diodes (LEDs) in a pulsed operation offer combined characteristics in efficiency, thermal management, and communication, which make them attractive for many applications such as backlight unit, optical communication, and optogenetics. In this paper, an analytic model, validated by three dimensional finite element analysis and experiments, is developed to study the thermal properties of micro-scale inorganic LEDs (μ-ILED) in a pulsed operation. A simple scaling law for the μ-ILED temperature after saturation is established in terms of the material and geometrical parameters of μ-ILED systems, peak power, and duty cycle. It shows that the normalized maximum temperature increase only depends on two non-dimensional parameters: normalized μ-ILED area and duty cycle. This study provides design guidelines for minimizing adverse thermal effects of μ-ILEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.