Abstract

Indium nitride single crystals, grown by the nitrogen microwave plasma method have been used in the determination of thermal properties of InN. Specific heat of InN was measured in the temperature interval between 150 and 300 K. InN Debye temperature and Grüneisen parameter calculated from these data are: Θ = 660 K and γ = 0.77. Thermal conductivity of InN has been measured by the laser-flash method. The InN thermal conductivity, obtained from measurement of InN ceramics, was 45 W/(m·K) This is much below 176 W/(m·K), the ideal lattice estimate based on phonon-phonon inelastic scattering, indicating a large contribution from point defects and grain boundaries to phonon scattering. InN vs. In + N 2 stability has been studied by ultra-high-pressure X-ray measurements: for nitrogen pressure p = 60 kbar, InN has been found to be stable up to T = 710 ± 10 °C. It has been also demonstrated that the decomposition of InN at temperatures below 660 °C is kinetically controlled.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call