Abstract

Thermooxidative degradation of poly(vinyl chloride) (PVC) is inevitable during its processing. Recycling of this polymer requires reprocessing in most cases, and due to the low thermal stability of PVC, it is of paramount importance to reveal the effect of thermooxidation on the thermal stability of this commercially important polymer. However, detailed systematic investigations are lacking on this crucial problem. In this study, the thermal behavior of PVCs thermooxidized in dilute dioctyl phthalate (DOP) (di(2-ethylhexyl) phthalate, DEHP) plasticizer was investigated by DSC, thermal gravimetry and isothermal degradation under inert atmosphere. It was found that thermooxidation leads to PVCs with certain extent of internal plasticization by DOP chemically bound to the PVC chains and by the oxidized chain segments as well. Thermogravimetry and isothermal dehydrochlorination under inert atmosphere revealed that even low extent of thermooxidation of PVC (0.4 mol% of HCl loss in 30 min at 200°C) leads to dramatically decreased thermal stability of this polymer with 50–60°C lower onset decomposition temperature than that of the virgin resin. This unexpected finding means that at least part of the oxidized moieties formed during oxidation of the PVC chains acts as initiators for thermal dehydrochlorination at relatively low temperatures, resulting in significant decrease of the thermal stability of the polymer. These striking results also indicate that the decreased thermal stability caused by thermooxidation in the course of the primary processing of this polymer should be taken into account in order to efficiently stabilize PVC products for reprocessing and recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.