Abstract

Sixteen degradable, tyrosine-derived polyarylates with well-defined chemical structures were used to study the effect of polymer structure on the glass transition temperature and enthalpy relaxation kinetics (physical aging). These polyarylates compose a model system where the number of methylene groups present in either the pendent chain or the polymer backbone can be altered independently and in a systematic fashion. Quantitative differential scanning calorimetry was employed to measure the glass transition temperature and the enthalpy relaxation kinetics. Correlations between these material properties and the polymer structure were established. The glass transition temperature of this family of polymers ranged from 13 to 78°C. The addition of methylene groups to either the pendent chain or the polymer backbone made a fairly constant contribution to lowering the glass transition temperature. The rate of enthalpy relaxation increased with an increasing number of methylene groups in the polymer backbone, but was independent of the number of methylene groups in the pendent chain. This observation indicated that the rate of enthalpy relaxation in these polymers was limited by the mobility of the polymer backbone. The enthalpy relaxation data was fitted to the Cowie-Ferguson model and the relaxation times obtained ranged from 44 min to about 100 min. Although these structure-property correlations facilitate the design of new materials with predictable thermal properties, they are rarely investigated for biomedical polymers. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1441–1448, 1997

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call