Abstract

A series of polylactide/redwood flour (PLA/RWF) and polylactide/bamboo fiber (PLA/BF) composites were successfully prepared using a solution mixing procedure. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (XRD) were employed to characterize these composites. Thermal properties and crystallization behaviors of PLA composites were determined by their respective techniques of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). With the increasing content of fibers, the glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA/RWF composites decreased first and then increased, but Tg and Tm of PLA/BF composites increased first and decreased afterwards. It is suggested that fibers could improve the segmental mobility of PLA; meanwhile, the different morphologies, sizes, and densities of RWF and BF have different effects on thermal properties of composites. Under the increasing content of RWF, the crystallization rate of the composite increased first and decreased afterwards. When the content of RWF was 5%, the crystallization rate was at its maximum. It could be possible that the addition of fibers was able to nucleate PLA and increase the degree of crystallinity, but the excess content of fibers easily led to heterogeneous composites and subsequent poor crystallization behaviors. In a word, thermal properties and crystallization behaviors of PLA composites were regularly changing by increasing content of fibers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call