Abstract

Nucleation capacity of organically modified natural montmorillonite within the surface-treated banana fiber (BF)-reinforced PLA biocomposites has been studied using DSC analysis in the present investigation. Both the surface treatments and nanoclays play vital roles in the variation in nucleation process of PLA during cold crystallization process. Biocomposite made up of silane-treated BF and its bionanocomposite prepared using cloisite 30B (C30B) were showed superior nucleation parameters, n and K values, in the Avrami plots. Enhanced equilibrium melting point and lower E a suggests the reinforcing effect imparted by the BF surface treatments and C30B within the PLA matrix. Even though, Louritzen–Hoffmann theory was revealed that no change in crystallization regimes of PLA even after the biocomposite and bionanocomposite preparation. TG analysis revealed better heat barrier capacity for all the biocomposites and bionanocomposites in comparison with virgin PLA (V-PLA). Increased storage modulus values for biocomposites and bionanocomposites also confirm the reinforcing effects of the fillers. Heat deflection temperature and the flammability studies concluded better application window for newly developed materials than that V-PLA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.