Abstract

AbstractAn influence of the second neighbor interaction on the process of heat propagation in a one‐dimensional crystal is studied. Previously developed model of the ballistic nature of the heat transfer is used. It is shown that the initial thermal perturbation evolves into two consecutive thermal wave fronts propagating with finite and different velocities. The velocity of the first front corresponds to the maximum group velocity of the discrete crystalline model. The velocity of the second front is determined by the second group‐velocity extremum, which arises at a certain ratio between the stiffnesses of the first and second neighbor interaction in the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.