Abstract

To investigate the impact of the Bandar Abbas thermal power plant on the waters of the Persian Gulf coast, a combination of satellite images and ground data was utilized to determine the Sea Surface Temperature (SST) as a thermal index, Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD) as biological indices. Additionally, measurements of SO2, O3, NO2, CO2, CO, and CH4 values in the atmosphere were taken to determine the plant's impact on air pollution. Temperature values of the water for different months were predicted using Long Short-Term Memory (LSTM), Support Vector Regression (SVR), and Cascade neural networks. The results indicate that the waters near thermal power plants exhibit the highest temperatures in July and September, with temperatures reaching approximately 50 °C. Furthermore, the SST values were found to be strongly correlated with ecological indices. The Multiple Linear Regression (MLR) analysis revealed a strong correlation between the temperature and TOC, COD, and O2 in water (RTOC2=0.98), RO22=−0.89, RCOD2=0.87 and O3, NO3, CO2, and CO in the air (RO32=0.99,RNO32=0.97,RCO22=0.95,RCO2=0.96). Finally, the results demonstrate that the LSTM method exhibited high accuracy in predicting the water temperature (R2 = 0.98).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.