Abstract
Thermal post-buckling analysis is presented for a simply supported, composite laminated plate subjected to uniform or non-uniform tent-like temperature loading. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reddy's higher-order shear deformation plate theory, and include thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine thermal buckling loads and post-buckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated plates. The effects played by transverse shear deformation, thermal load ratio, plate aspect ratio, total number of plies, fiber orientation and initial geometrical imperfections are studied. Typical results are presented in dimensionless graphical form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.