Abstract

Aqueous solutions under thermal gradients feature thermodiffusion (Ludwig-Soret) and thermoelectric (Seebeck) effects, whereby the thermal fields build concentration and charge density gradients. Recently, it has been shown that thermal gradients induce polarization fields in water. We use non-equilibrium molecular simulations to quantify the thermoelectric Seebeck coefficient of alkali halide aqueous solutions. We examine the dependence of the coefficient on temperature and salt concentration and show that the thermal polarization of water plays a key role in determining the magnitude of the thermoelectric behavior of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.