Abstract
To acquire a well bonded interface between the copper and the diamond particles in diamond-copper matrix composites, an available process to apply a vapor deposited aluminum (Al) coating onto diamond particles was used to solve this interfacial problem. The diamond-copper matrix composites were prepared by spark plasma sintering (SPS) process and the effect of Al-coated diamond particles was demonstrated. The experimental results showed that the densification, interfacial bonding and thermal conductivity of Al-coated composites were evidently improved compared to those of the uncoated composites. A maximum thermal conductivity (TC) of 565 W/(m·K) was obtained in the coated composite containing 50vol% diamond particles sintered at 1 163 K. Additionally, the experimental data of thermal conductivity and coefficient of thermal expansion (CTE) were compared with the predictions from several theoretical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wuhan University of Technology-Mater. Sci. Ed.
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.