Abstract
A fully analytical model is established for the thermal fluctuations of the beatnote phase of an optically pumped dual-frequency vertical-external-cavity surface-emitting laser (VECSEL). This model starts with the resolution of the heat equation inside the semiconductor chip structure and follows with the evaluation of the induced thermo-optic phase shift. Both the fluctuations of the heat induced by the optical pumping and the thermodynamic fluctuations at room temperature are considered. On the one hand, the thermal response of the structure is investigated and a significant thermal lens effect caused by the pump is deduced. On the other hand, the power spectral density of the frequency noise is calculated in the presence of diffusion spatial anisotropy. The present model is in very good agreement with the phase noise measured for a dual-frequency VECSEL at 852 nm for application to metrology and the validity of the usual low-pass filter model is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.