Abstract
Understanding the processes occurring during the nanocrystallization of glass-forming liquids is important for creating artificial nanostructures for various applications. In this article, local thermal perturbations in supercooled glass-forming liquids and polymers during the nucleation of a crystalline phase are studied. To describe the thermal response of supercooled glass-forming liquids, an integro-differential heat equation with dynamic heat capacity is used. We have found that the effect of the dynamic heat capacity is significant for fast local thermal perturbations that arise in the early stages of crystal nucleation in glass-forming liquids and polymers. It has been established that local temperature perturbations during the nucleation of crystals in silicate glasses and polymers can change the nucleation rate by 2–5 orders of magnitude. The knowledge gained can be useful for the technology of artificial microstructures and advanced materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.