Abstract
N, N'-oxalyl bis(piperonylic acid) dihydrazide (PAOD) was obtained through the amination of piperonylic acid chloride and its structure was characterized by Fourier transform infrared spectrometer and nuclear magnetic resonance. Melting blend technology was used to prepare the modified poly(L-lactic acid) (PLLA) containing the various loading PAOD as a new organic nucleating agent. The thermal performances including crystallization, melting behavior and thermal decomposition process, as well as the fluidity of PAOD-nucleated PLLA were investigated via a series of tests. The DSC results showed that, in comparison to DSC curve of the virgin PLLA, the DSC curves of all PLLA/PAOD appeared the sharp melt-crystallization peak, and a higher PAOD concentration caused the melt-crystallization to occur in the higher temperature region and reduced the negative effect of the high cooling rate on the melt-crystallization process. However, with increasing of PAOD concentration, the cold-crystallization enthalpy decreased from 24.4 J/g to 16.7 J/g. The melting peak after melt-crystallization depended on the heating rate and the PAOD concentration; and the double melting peaks appeared after isothermal crystallization in low temperature region was thought to be due to the melting-recrystallization. The addition of PAOD decreased the onset decomposition temperature of PLLA, but the onset decomposition temperature was determined by the PAOD concentration and the intermolecular interaction of PLLA and PAOD. Additionally, the PAOD could considerably improve the fluidity of PLLA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.