Abstract

AbstractWe prepared the novel high‐entropy (xRE1/x)2Si2O7 (RE = Y, Yb, Er, Sc, Gd and Eu, x = 2–6) ceramics by a two‐step method for the application of thermal environmental barrier coatings (TEBCs), and the effect of configuration entropy and lattice distortion on microstructures and thermal properties at high temperature were investigated. The results showed that the configuration entropy resulted from mass disorder can only contribute to the stability of thermal properties and microstructure. Lattice distortion should be responsible for reduction in thermal properties, which may be due to the enhancement of atomic nonharmonic vibration, resulting in intensified phonon scattering and hindering atomic amplitude oscillation. As‐prepared high‐entropy (Y1/6Yb1/6Er1/6Sc1/6Gd1/6Eu1/6)2Si2O7 ceramic exhibited the relatively low thermal diffusivity, thermal conductivity and coefficient of thermal expansion, which were 0.89–0.50 mm2 s–1, 1.99–2.50 W m–1 K–1 and (3.01–3.78) × 10–6 K–1 in the temperature range of 293–1373 K, respectively. This work provides a solid guarantee for the application of TEBC materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.