Abstract

In this paper, a novel battery thermal management system (BTMS) using the dielectric, non-flammable HFE-7000 refrigerant is proposed for electric vehicles (EVs). Its thermal performance is studied both numerically and experimentally. The refrigerant flows and boils on the battery wall surfaces, which lowers the thermal contact resistance as well as enhances the heat transfer process. Therefore, the thermal performance of the battery module is improved. The results indicate that forced convection heat transfer of the liquid refrigerant is dominating in the control of the temperature rise in the battery module. The maximum battery temperature drops to 35.10°C at 0.3ms-1 inlet velocity and a 5C discharge rate. In contrast, the temperature uniformity between individual battery cells primarily depends on the nucleate boiling heat absorption and local perturbation of the two-phase turbulent flow. A temperature difference of no more than 3.71°C can be observed at 5C discharge rate and 0.1ms- 1. In addition, good agreement was found between the numerical results and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call