Abstract
This study is dedicated to a numerical investigation of convective heat transfer on the rotor surfaces of a rotor-stator configuration that is typically found in large hydro-generators. The computational fluid dynamics calculations with two turbulence modelling approaches are used to predict the flow structure and heat transfer in the air gap of the rotor-stator configuration. The steady state mixing plane approach is employed at the interface to couple the rotor and stator components. Results show that the location of mixing plane interface in the air gap plays an important role in the prediction of heat transfer on the pole face. Also, it is indicated that the prediction of temperature distribution on the pole face is greatly affected by the turbulence models used. Furthermore, through a comparison between the pure convective and conjugate heat transfer methodologies, it is shown that the inclusion of solid domain into the numerical model significantly improves the thermal prediction of the solid components of the machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.