Abstract
ABSTRACT A thermodynamic analysis was performed on a newly developed concentrated solar power (CSP) technology known as the Cross-Linear (CL), which addresses the issue of cosine loss in conventional CSP technology. The analytical model has been developed and validated using experimental data collected at the experimental site situated in Bhopal, India. The analysis was performed under direct normal irradiance of 775 W/m2 with the key objective to determine the optimum inlet condition of the heat transfer fluid (HTF) considering three optimization parameters: HTF outlet temperature, energy, and exergy efficiency of the receiver. Also, the exergy of the solar field is investigated depending on the available solar irradiation throughout the day for three different configurations of the heliostat field. After a comprehensive analysis of the results, the optimal air inlet temperature range was observed to be between 373 and 423 K, and the optimal air mass flow rate was overserved to be 0.0925 kg/s (333 kg/h), which provides energy and exergy efficiency values within 50% to 60% and 28% to 34%, respectively. The maximum electrical exergy efficiency for 30 kW plant capacity is observed to be around 70% at solar noon with a cosine factor of around 0.9 for 4-hour duration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.