Abstract

Vertically-aligned carbon nanotube array is expected to inherit high thermal conductivity and mechanical compliance of individual carbon nanotube and serve as thermal interface material. In this paper, vertically-aligned multi-walled carbon nanotube arrays have been directly grown on Pt film and the thermal performance has been studied by using laser flash technique. The determined thermal diffusivity decreases from 0.187 to 0.135cm2s−1 and the thermal conductivity increases from 1.8 to 3.1Wm−1K−1 as temperature increases from 243.2 to 453.2K. The fracture surface of the array peeled off the Pt film was characterized by scanning electron microscopy. It has been illustrated that the tearing surface is not smooth but fluffy with torn carbon nanotubes, indicating strong interfacial bonding and consequent small interface resistance between carbon nanotube array and Pt film. According to Raman spectra and transmission electron microscopy image, the possible mechanisms responsible for the thermal transport degradation are low packing density, twist, and the presence of impurities, amorphous carbon, defects and flaws. The influence of intertube van der Waals interactions has been studied by comparing the phonon dispersion relations and is expected to be not significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.