Abstract

Battery thermal management is of great significance for increasing the thermal safety and prolonging the service life of the electric vehicle battery pack. In this paper, the thermal property of pouch Lithium-ion battery module cooled by PCMs (Phase Change Materials) was investigated. The three-dimensional thermal models of battery modules consisted of different thickness batteries were established to study the effects of space between adjacent batteries, melting point and thermal conductivity of PCMs on cooling performance. The results showed that the Tmax (maximum temperature) and ΔTmax (maximum temperature difference) declined when space between modules and thermal conductivity of PCMs increased. And the decline became more obviously with the increasing melting point of PCMs. Tmax increased and ΔTmax declined as the melting point of PCMs increased. On the basis of the Tmax of battery module meeting the temperature requirements, improving the space between adjacent batteries, melting point and thermal conductivity of PCM properly contributed to enhance the conformity of temperature filed. The conclusion would contribute to the design of battery thermal management system based on PCMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.