Abstract

Perovskite‐based photovoltaics are attractive for applications in space. The space environment is harsh with ionizing radiation, atomic oxygen, UV radiation, extreme temperatures, and thermal cycling. Herein, the thermal performance of perovskite active layer and perovskite photovoltaic devices in low earth orbit is analyzed. A 1 μm silicon oxide layer coupled with 500 nm zirconia thin film aid in cell thermal management is determined. The residual stresses between various layers in a device are modeled and it is proved that thermally induced mechanical failure of the perovskite (time years) is unlikely during operating lifetime of any mission. Target power conversion efficiencies are also shared to manage maximum operating temperature of a perovskite‐based device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.