Abstract

Vaulted or domed roofs have been frequently adopted by builders and architects throughout the Middle East and other hot dry areas. However, the thermal performance of such buildings under hot dry climatic conditions has rarely been quantitatively studied. In this paper, a detailed finite element model for the investigation of the thermal performance of non air-conditioned buildings with vaulted roofs (VR) is suggested based on two-dimensional unsteady heat transfer in such roofs and solar geometry. This model allows a comparison of the thermal performance of non air-conditioned buildings with a VR and a flat roof (FR) under different climatic conditions. Results obtained by numerical calculation show that, irrespective of building type the VRs are applied to, buildings with a VR have lower indoor temperatures as compared to those with a FR. The reason is that such roofs dissipate more heat than a FR does by convection and thermal radiation at night due to the enlarged curved surfaces. This implies that such roof forms are suitable for buildings located in hot dry regions but not for those located in hot humid areas, and reasonably explains why curved roofs have been extensively adopted by builders and architects in the hot dry areas in the past. However, with the decrease in the half rim angle of a VR, the difference of indoor thermal condition between a VR and a FR building becomes small and insignificant. Results also indicate that the indoor air temperature is slightly influenced by the half rim angle θ 0 and the orientation φ v of the VR. To be effective to create a favorable thermal condition inside buildings with a VR under hot dry climatic conditions, the half rim angle of a VR should be θ 0>50°, instead of θ 0 < 5 0 ∘ , which is the optimal half rim angle of a VR of air-conditioned buildings, as found by the present authors in a previous study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.