Abstract
Smooth and rough porous copper fiber sintered sheets, employed here as wicks for loop heat pipes for the first time, were fabricated using a low-temperature solid-phase sintering method. The capillary performance of these porous copper fiber sintered sheets were analyzed and discussed. The influence of the surface morphology, filling ratio, and working fluid on the thermal resistance, evaporator wall temperature, and start-up time of the loop heat pipes were investigated. The results showed that the capillary pumping amountofworking fluid for both smooth and rough porous copper fiber sintered sheets initially increases rapidly, and then gradually attains a stable state. The curve of the capillary pumping amountofworking fluid can be described as a function that increases exponentially over time. When rough porous copper fiber sintered sheets are used as wicks and deionized water is used as the working fluid, the capillary pumping amount is maximized. Compared to smooth porous copper fiber sintered sheets, loop heat pipes with rough porous copper fiber sintered sheets exhibit a shorter start-up time, lower thermal resistance, and lower evaporator wall temperature. For a filling ratio in the range of 15–45%, loop heat pipes with rough porous copper fiber sintered sheets and a 30% filling ratio show lower thermal resistance and a lower evaporator wall temperature. Ultimately, the use of deionized water as the working fluid with a 30% filling ratio enables loop heat pipes with rough porous copper fiber sintered sheets to be stably operated at a heat load of 200W.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.