Abstract

About 60% of the energy input in the chemical industry is discarded from the plant. Energy saving can be achieved in the entire plant by recovering these waste heats and reusing them as power and heat sources in the power plant. An adsorption heat pump has been developed for the purpose of regeneration of such unused energy. In this study, saturated humid air was supplied to a device packed with 13X zeolite particles of 4 mm in diameter. The time variation of temperature in the apparatus was measured experimentally. Then, the maximum temperature was estimated from the relationship between heat balance and adsorption equilibrium. The trend of the maximum temperature calculated from the heat balance is consistent with experiment. Further, it was found from the result of the heat balance equation that the sensible heat of the humid air supplied and the heat of adsorption of the zeolite are mainly distributed to the sensible heat of the zeolite. In the future, it is important to make effective use of the sensible heat of this zeolite. In order to extract more thermal energy from the device, it is necessary to improve the heat transfer between the packed bed and medium. A double pipe heat exchanger having a zeolite packed bed on the annular side was proposed as an apparatus. Flow direction of the humid air supplied to device was changed in two different ways. The one of them is supplying humid air radial flowly to the device and another is supplying the air in parallel flow. The influence of flow direction on heat transfer between packed bed and medium is studied with numerical simulation.

Highlights

  • The use of waste heat is an increasingly urgent task for modern industries such as the chemical, steelmaking and metallurgical sectors around the world

  • 4.1.1 Effect of temperature of humid air Figure 6 shows the influence of the inlet humid air temperature on the time-dependent change of the temperature inside the packed bed

  • The temperature behaviour when the zeolite was brought into contact with moist air was shown by experiments, and the heat balance confirmed an effective amount of heat when removed from the apparatus

Read more

Summary

Introduction

The use of waste heat is an increasingly urgent task for modern industries such as the chemical, steelmaking and metallurgical sectors around the world. The concept of direct contact heat exchange between porous adsorbents and heat exchange fluids was introduced to generate useful vapor directly from hot water (Atakan et al, 2013). This new steam generation system from zeolite-water AHP has been experimentally proven and analyzed numerically (Oktariani et al, 2012). There are problems with the durability of the adsorbent particles in the process of water adsorption to zeolite. Investigations should be made to overcome the problem of durability of the adsorbent and to improve the heat transfer coefficient of a particle packed bed with generally low effective thermal conductivity

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.