Abstract
The thermal performance of a compact loop heat pipe is fabricated and tested for different heat inputs ranging from 30 W to 500 W using water and silver-water nanofluid with low volume concentrations of silver nanoparticles (0.03% and 0.09%) in vertical orientation. A flat square evaporator having a bottom area of 30 mm × 30 mm and a height of 15 mm is used in the present study. The effect of heat input on the thermal resistance, evaporation and condensation heat transfer coefficient is experimentally investigated. The results showed that a reduction in the evaporator thermal resistance of 26.45% is achieved with 0.09 volume percentage of silver nanoparticles when compared with that of water. Further an enhancement in the convective heat transfer coefficient of 25.23% has been observed with the same volume concentration of silver nanoparticles. Addition of small amount of nanoparticles enhanced the operating range of heat pipe beyond 500 W and without the occurrence of any dry out conditions. From the outcome of this study, it is concluded that the compact loop heat pipe with flat square evaporator can be used for thermal control of electronic equipments with limited space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.