Abstract
The thermal performance of a flat-plate solar collector (FPSC) is investigated experimentally and analytically. The studied nanofluid is SiO2/deionized water with volumetric concentration up to 0.6% and nanoparticles diameter of 20–30 nm. The tests and also the modeling are performed based on ASHRAE standard and compared with each other to validate the developed model. The dynamic model is based on the energy balance in a control volume. The system of derived equations is solved by employing an implicit finite difference scheme. Moreover, the thermal conductivity and viscosity of SiO2 nanofluid have been investigated thoroughly. The measurement findings indicate that silica nanoparticles, despite their low thermal conductivity, have a great potential for improving the thermal performance of FPSC. Analyzing the characteristic parameters of solar collector efficiency reveals that the effect of nanoparticles on the performance improvement is more pronounced at higher values of reduced temperature. The thermal efficiency, working fluid outlet temperature and also absorber plate temperature of the modeling have been confirmed with experimental verification. A satisfactory agreement has been achieved between the results. The maximum percentage of deviation for working fluid outlet temperature and collector absorber plate temperature is 0.7% and 3.7%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.