Abstract

Green roofing is a sustainable solution for building energy saving, urban heat island mitigation, rainwater management and pollutant absorption. The effectiveness and performance of green roofs depend on layer composition and properties. The uncertainties surrounding green roof performance modeling are mainly related to the vegetation and substrate layer, which are subjected to surrounding climatic conditions. Energy simulation software typically does not use validated models encompassing all possible combinations of vegetation layers and substrates. Therefore, the objective of this research is to investigate different extensive green roof solutions for assessing thermal performance and to provide information on vegetation and substrate layer design. Different simulations executed in EnergyPlus were carried out based on realistic literature data drawn from previous experimental tests conducted on plants and substrates. Several combinations (30 plant-substrate configurations, six vegetative species and five types of substrates) were defined and evaluated. Furthermore, indexes based on the surface temperatures of green roofs were used. Finally, a comprehensive ranking was created based on the scores to identify which extensive green roof combinations offered the highest performance. Greater plant heights, LAI values and leaf reflectivity values improve green roof energy performance in the summer more significantly than substrate modification. During the winter, thermal performance is more heavily dependent on the substrate if succulent vegetation is present, regardless of the substrate used. These results could provide designers with useful data at a preliminary stage for appropriate extensive green roof selection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.