Abstract
Air-source heat pump (ASHP) is considered to be one of the most energy conservation heating system in the areas without district heating. To improve the performance of the ASHP heating system, a new type of refrigerant-heated radiator (RHR) is proposed. As a new direct-condensation terminal, it avoids the secondary heat exchange and is conducive to reduce the condensing temperature and heat loss. Experiments are conducted to investigate the temperature and operating characteristics of the heating system with the new radiator, as well as the thermal performance and system efficiency during the heating period. The results indicate that the radiator has favorable thermal performance with the heat flux varies from 89.2 W/m2 to 211.4 W/m2 during the testing period. Heat storage material is employed in the radiator to maintain the stability of indoor thermal environment during the defrosting process, and it can provide the heat of 750.9–1699.6 kJ. The convective heat transfer coefficient of the RHR was regressed and the coefficient of performance (COP) of the new system could be as high as 3.5 during the tests. Meanwhile, the ASHP heating system with RHR is superior in the indoor thermal comfort with the reasonable indoor PMV and lower vertical temperature gradient. It is demonstrated that the refrigerant-heated radiator matches well with the heat pump heating system, and can effectively improve the thermal performance and indoor thermal environment, as well as it has significant effects on the application of ASHP in the severe cold areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.