Abstract

In this paper, MoO3 hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO3 hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO3 hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO3 hollow microspheres show a higher discharge capacity of 1377.1mAhg−1 in the first discharge and a high reversible capacity of 780mAhg−1 after 100 cycles at a rate of 1C. Furthermore, as a gas sensing material, the MoO3 hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.