Abstract

This review article deals with a particular property of lubricating greases – resistance to oxidation. This property, also referred to as oxidative or thermal oxidation stability, has a decisive influence on the quality and duration of lubricating greases service life in friction nodes, bearings and lubrication systems. Lubricating greases are colloidal systems in which the thickener creates an elastic three-dimensional network, maintaining the liquid phase. The structure of lubricating greases, division of greases into types, depending on the thickener used, is presented. The basic additives in lubricating greases are described, and the group of used antioxidant additives is discussed in detail. Under operating conditions, the grease is subject to factors that cause its destruction – shear stress, pressure, loads, changing operating conditions, especially temperature changes. The types of lubricating greases degradation are presented, as well as methods and techniques of aging processes evaluation. During operation, the grease fulfilling its basic functions in the lubrication system is primarily exposed to high temperatures. The predominant aging process which directly affects the service life of the grease is oxidation. The oxidation process is discussed, with the specification of its four stages: initiation, propagation, chain branching and termination. One of the methods of preventing the oxidation process is the selection of appropriate improvers. Thermal oxidation stability of greases can be modified by introducing appropriate antioxidants, the selection of which depends on the type of grease thickener and the operating temperature of the grease. The published literature review from over the last ten years shows how diverse are the ways of modifying thermal oxidation stability of greases and the methods of assessing this property.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call