Abstract

This research is targeted to enhance the functionality of bipolar complementary metal-oxide-semiconductor by innovative concepts of embedded resistive random access memory (RRAM) cells integration in the back-end-of-line (BEOL) region. The material of our interest is tungsten oxide as an insulator in RRAM cells and we focussed on the growth and characterisation of closed tungsten oxide layers. In this materials science study, we investigated the tungsten oxidation process under BEOL constraints (< 450 °C). Thin films of tungsten oxide (6–50 nm) were prepared by oxidising, under an atmosphere of one bar oxygen, the chemical vapour deposited tungsten layers on TiN covered silicon wafers. The X-ray photoelectron spectroscopy investigations indicate that the stoichiometric WO 3 grows after oxidation at 300 °C for an hour. The tungsten oxide layers prepared above 300 °C for longer than 15 min were non-stoichiometric. The X-ray diffraction investigations reveal the crystallisation of the WO 3 layers in monoclinic phase above 350 °C when oxidised for longer than 30 min; above 400 °C the (001) growth texture becomes dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.