Abstract

Fe-Ni-Cr alloys have been used for more than 40 years to manufacture metal foil strain gages for specific applications. The main characteristics of this metal are high gage factor, high fatigue strength, and high thermal output. To circumvent the effect of high thermal output, typical applications in stress analysis have involved dynamic loading where the high gage factor and fatigue strength could be used to advantage and the effect of thermal output could be minimized or ignored. Typical applications in precision transducers have also involved dynamic loading and/or careful exercise of Wheatstone bridge circuit cancelation of like-thermal output in adjacent arms. In this paper, we report uniform thermal output variation in Fe-Ni-Cr metal foil strain gages. Quarter bridge and half bridge thermal output data are presented, which illustrated the suitability of this type of strain gage for stress analysis and precision transducers even when loading conditions are not dynamic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.