Abstract

Comparative studies of the thermal nitridation and subsequent oxygen-induced etching reactions on Si(100) and Si(111) surfaces were done using a scanning tunneling microscope. Both surfaces were thermally nitrided by exposure to nitrogen gas at 700°C and subsequently reacted with oxygen under an oxygen partial pressure of 1×10-7 Torr. Silicon nano-structures were formed via selective local oxygen etching of silicon using the silicon nitrides as masks against the oxygen exposure. Resultant silicon nano-structures showed distinct differences between the two surfaces. Very narrow size distribution of silicon dots with an average size of ∼5 nm was obtained on the Si(100) surface, whereas a broad size distribution of silicon protrusions ranging from 5 to 20 nm was obtained on the Si(111) surface. We discuss the observed differences between Si(111) and (100) surfaces considering the thermal mobility of nitrogen species and the lattice and symmetry mismatches between the silicon nitride layer and Si.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.