Abstract

The thermal neutron spectra in light water of slab geometry poisoned with Cd and/or In were measured by the time of flight method, using a 20-MeV electron linear accelerator. The thermal spectra were simulated to those in the Pu built-up core of a commercial light water reactor corresponding to a fuel burnup of about 15,000 MWD/T. The results of measurements were compared with calculations based on the S 4 method using the Haywood scattering law. Fairly good agreement was obtained between the calculated and measured results except in a limited range of energy above the 0.176 eV resonance of Cd. It is concluded that the P 1 components of the source neutrons as well as the neutron scattering kernel play a significant role in the calculation of the thermal neutron spectra with large flux gradients, and that the scattering kernel of light water based on the Haywood model will be accurate enough to evaluate the infinite multiplication constant k∞ of light water reactor cores with high fuel burnup within an err...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call