Abstract

Radiative energy transfer between closely spaced bodies is known to be significantly larger than that predicted by classical radiative transfer because of tunneling due to evanescent waves. Theoretical analysis of near-field radiative transfer is mainly restricted to radiative transfer between two half-spaces or spheres treated in the dipole approximation (very small sphere) or proximity force approximation (radius of sphere much greater than the gap). Sphere-sphere or sphere-plane configurations beyond the dipole approximation or proximity force approximation have not been attempted. In this work, the radiative energy transfer between two adjacent non-overlapping spheres of arbitrary diameters and gaps is analyzed numerically. For spheres of small diameter (compared to the wavelength), the results coincide with the dipole approximation. We see that the proximity force approximation is not valid for spheres with diameters much larger than the gap, even though this approximation is well established for calculating forces. From the numerical results, a regime map is constructed based on two nondimensional length scales for the validity of different approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.