Abstract

A thermal nanoimprint process for the high-temperature (400 °C) fabrication of submicron, epitaxial, metallic wire arrays over areas > 1 × 1 cm2 is reported. Based on a method using an imprinted polymeric bilayer resist template that is transferred to a metallic (molybdenum) mask, this process is enabled by an appropriate undercut profile of the Mo mask. The undercut profile is obtained from a distinctive wedge-shaped profile of the polymeric resist layers by carefully controlling the etch parameters. Using flexible ethylene tetrafluoroethylene imprint molds, we demonstrate defect-free imprinting on MgO substrates. Epitaxial patterning is demonstrated with Fe/MnPd bilayer wire arrays subsequently grown along well-defined crystallographic orientations. X-ray diffraction of the patterned arrays reveals that the MnPd can be grown in two different crystallographic orientations (c-axis and a-axis normals). The epitaxial nature of the patterned arrays is further confirmed by magnetic measurements that demonstrate the competing effects of intrinsic (magnetocrystalline and exchange) and lithography-induced shape anisotropies on the magnetization reversal characteristics along different directions with respect to the axis of the wire arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call