Abstract

Lithium-ion batteries (LiBs) are well-known power sources due to their higher power and energy densities, longer cycle life and lower self-discharge rate features. Hence, these batteries have been widely used in various portable electronic devices, electric vehicles and energy storage systems. The primary challenge in applying a Lithium-ion battery (LiB) system is to guarantee its operation safety under both normal and abnormal operating conditions. To achieve this, temperature management of batteries should be placed as a priority for the purpose of achieving better lifetime performance and preventing thermal failures. In this paper, fibre Bragg Grating (FBG) sensor technology coupling with machine learning (ML) has been explored for battery temperature monitoring. The results based on linear and nonlinear models have confirmed that the novel methods can estimate temperature variations reliably and accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.