Abstract

Laser cladding and Directed Energy Deposition are two related processes that allow the deposition of specific surface coatings and the production of additively manufactured parts. In both processes, the selection of optimised parameters results in the deposition of high-density material with low dilution. However, the thermal and geometrical conditions constantly change during the process and the parameters need to be continually adapted in order to avoid defects or poor properties. In this context, the development of closed-loop monitoring systems is crucial in order to widen the field of possible applications towards more complexity, with a more stable process and higher materials properties. In this research, the possibility of thermal monitoring with middle-wave and long-wave infra-red cameras is investigated for Directed Energy Deposition of 316L, Stellite 21 and CuSn10. The melt pool length and the cooling rate are extracted from thermal imaging while the laser power was varied, and these results are compared to the materials properties of the deposited tracks. The main results show that an increase of melt pool length results in a decrease of porosity and an increase of dilution, which induces a change of hardness. The melt pool length can be regulated by adjusting the laser power in order to keep both the porosity and the dilution within acceptable values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call