Abstract

Additive manufacturing involves creating three-dimensional (3D) objects by depositing materials layer-by-layer. The freeform nature of the method permits the production of components with complex geometry. Deposition processes provide one more capability, which is the addition of multiple materials in a discrete manner to create “heterogeneous” objects with locally controlled composition and microstructure. The result is direct digital manufacturing (DDM) by which dissimilar materials are added voxel-by-voxel (a voxel is volumetric pixel) following a predetermined tool-path. A typical example is functionally gradient material such as a gear with a tough core and a wear-resistant surface. The inherent complexity of DDM processes is such that process modeling based on direct physics-based theory is difficult, especially due to a lack of temperature-dependent thermophysical properties and particularly when dealing with melt-deposition processes. In order to overcome this difficulty, an inverse problem approach is proposed for the development of thermal models that can represent multi-material, direct digital melt deposition. This approach is based on the construction of a numerical-algorithmic framework for modeling anisotropic diffusivity such as that which would occur during energy deposition within a heterogeneous workpiece. This framework consists of path-weighted integral formulations of heat diffusion according to spatial variations in material composition and requires consideration of parameter sensitivity issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.