Abstract

The process of charging of an encapsulated ice thermal energy storage device (ITES) is thermally modeled here through heat transfer and thermodynamic analyses. In heat transfer analysis, two different temperature profile cases, with negligible radial and/or stream-wise conduction are investigated for comparison, and the temperature profiles for each case are analyzed in an illustrative example. After obtaining temperature profiles through heat transfer analysis, a comprehensive thermodynamic study of the system is conducted. In this regard, energy, thermal exergy and flow exergy efficiencies, internal and external irreversibilities corresponding to flow exergy, as well as charging times are investigated. The energy efficiencies are found to be more than 99%, whereas the thermal exergy efficiencies are found to vary between 40% and 93% for viable charging times. The flow exergy efficiency varies between 48% and 88% for the flows and inlet temperatures selected. For a flow rate of 0.00164 m 3/s, the maximum flow exergy efficiency occurs with an inlet temperature of 269.7 K, corresponding to an efficiency of 84.3%. For the case where the flow rate is 0.0033 m 3/s, the maximum flow exergy efficiency becomes 87.9% at an inlet temperature of 270.7 K. The results confirm the fact that energy analyses, and even thermal exergy analyses, may lead to some unrealistic efficiency values. This could prove troublesome for designers wishing to optimize performance. For this reason, the flow exergy model provides the most useful information for those wishing to improve performance and reduce losses in such ITES systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call