Abstract

In this paper, thermal modeling and analysis of a 10 kW double-stator switched reluctance machine (DSSRM) is presented. Thermal management is an essential step of the machine design, since overheated windings and cores might destroy the insulation and lead to failure of the machine. A three-dimensional (3-D) finite-element method (FEM) has been used to numerically calculate the temperature distribution in different parts of the machine. Furthermore, to include the use of water as coolant, computational fluid dynamics (CFD) has been utilized. Thermal performance of the prototype is then analyzed at various load conditions. A 10 kW prototype of the DSSRM has been built and the results have been experimentally verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call