Abstract

Time-domain thermoreflectance (TDTR) is a well-established pump–probe method for measuring thermal conductivity and interface conductance of multilayers. Interpreting signals in a TDTR experiment requires a thermal model. In standard front/front TDTR experiments, both pump and probe beams typically irradiate the surface of a multilayer. As a result, existing thermal models for interpreting thermoreflectance experiments assume that the pump and probe beams both interact with the surface layer. Here, we present a frequency-domain solution to the heat-diffusion equation of a multilayer in response to nonhomogeneous laser heating. This model allows analysis of experiments where the pump and probe beams irradiate opposite sides of a multilayer. We call such a geometry a front/back experiment to differentiate such experiments from standard TDTR experiments. As an example, we consider a 60nm amorphous Si film. We consider how signals differ in a front/front vs front/back geometry and compare thermal model predictions to experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call