Abstract

PurposeThe purpose of this paper is to propose a three‐dimensional thermal model for friction stir welding of AISI 1018 mild steel to predict the thermal cycle, temperature distribution, the effect of welding parameters on power required, heat generation and peak temperature during the friction stir welding process.Design/methodology/approachThe mathematical expressions for heat generation during the friction stir welding process were derived. The simulations for various welding and rotational speeds were carried out on ANSYS software employing temperature and radius dependent moving heat source and applying the boundary conditions.FindingsThe predicted thermal cycle, torque required and temperatures were found to be in good agreement with the experimental results. The heat generation and peak temperatures were found to be directly proportional to rotational speed and inversely proportional to welding speed. The rate of increase in heat generation and peak temperature were found to be higher at lower rotational speeds and lower at higher rotational speeds. The heat generation during friction stir welding was found to be 71.4 per cent at shoulder, 23.1 per cent at pin side and 5.5 per cent at bottom of the pin.Originality/valueA new temperature dependent slip factor has been used to determine the contribution of slipping and sticking on total heat generation. A temperature and radius dependent moving heat source has been employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.